Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No, SUP 71377 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1085]

References

De Kimpe, N., Boelens, M. \& Declercq, J.-P. (1993). Tetrahedron. In the press.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England. Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.

Acta Cryst. (1993). C49, 1980-1982

Intramolecular Interactions in Dimethyl 2,2'-Bipyridine-3,3'-dicarboxylate

Craig R. Rice, Kathryn J. Robinson and
John D. Wallis*
Chemical Laboratory, University of Kent, Canterbury CT2 7NH, England

(Received 8 April 1993; accepted 11 June 1993)

Abstract

The title compound crystallizes from acetone with the pyridine rings arranged at 53° to each other in a trans conformation. There are intramolecular interactions between the alkoxy O atoms of the ester groups and the C2 atoms of the opposite rings, similar to those observed in the $3,3^{\prime}$-dinitro analogue. There are no significant intramolecular interactions between ring N atoms and ester carbonyl C atoms, although similar 1,5 interactions have been observed in other cases.

Comment

Intramolecular interactions in $3,3^{\prime}$-disubstituted $2,2^{\prime}$-bipyridines control the conformations observed in the solid state. In the dinitrile (1), attractive interactions between each pyridine N atom and the nitrile C atom of the opposite ring lead to the molecule adopting a trans conformation with an angle of only $23.6(1)^{\circ}$ between the best planes of the two heterocyclic rings. These short $\mathrm{N} \cdots \mathrm{C}$ contacts have been proposed as a model for an early stage in the addition of a nucleophile to a nitrile
group. Indeed, the molecule shows in-plane distortions that widen the angle of approach of the nucleophilic centre to $\mathrm{C} \equiv \mathrm{N}$ to 108° (Baxter, Connor, Povey \& Wallis, 1991). In contrast, in the dinitro analogue (2), intramolecular interactions between the nitro O atoms and the electrondeficient C2 atoms of the opposite rings lead the molecule to deviate much further from a trans coplanar conformation. In this case, the inter-ring angle is $42.9(1)^{\circ}$ (Rice, Wallis \& Povey, 1992). Although intramolecular interactions between the amino N -atom lone pairs and nitro groups have been observed in peri-substituted naphthalenes (Egli, Wallis \& Dunitz, 1986), in (2) each pyridine N atom is only just in van der Waals contact with the nitro N atom attached to the opposite ring and, more significantly, the axes of the N -atom lone pairs are very poorly aligned for interaction with the nitro groups.

(1)

(2)

(3)

We have determined the X-ray crystal structure of the $3,3^{\prime}$-dicarboxylic ester (3) to investigate whether replacement of the nitro groups of (2) with more electrophilic ester groups induces a return to the type of interaction seen in (1). There are many examples of attractive interactions between electron-rich N atoms and carbonyl groups (Bürgi, Dunitz \& Shefter, 1973; Schweizer, Procter, Kaftory \& Dunitz, 1978).

The molecular conformation of (3) is illustrated in Figs. 1 and 2. Only half of the molecule is crystallographically unique; the two substituted pyridine rings are related by a twofold axis parallel to the b axis of the unit cell. The molecular conformation resembles that of the dinitro analogue (2) rather than the dinitrile (1). Thus, there are intramolecular interactions between the two halves of the molecule via ester O atoms and the ring C 2 atoms, while the pyridine N atoms and carbonyl C atoms are only just in van der Waals contact.

The best planes through the two pyridine rings lie at $53.2(1)^{\circ}$ from the trans coplanar conformation. The rings are very slightly folded about the C3..C6 vector, but the maximum deviation of a ring atom from the best plane is very small $[C 6=0.009(2) \AA$]. The ester groups lie at $39.7(1)^{\circ}$ to their respective pyridine rings, so that the alkoxy O atom of each

Fig. 1. Molecular structure of (3) with atomic displacement parameters drawn at the 50% probability level (Spek, 1991); only half of the molecule is crystallographically unique.

Fig. 2. Stereoview of the crystal packing of (3) (Spek, 1991).
ester group lies close to the C 2 atom of the opposite ring [$\mathrm{O} 8 A \cdots \mathrm{C} 2 B=2.849$ (3) \AA]. The $\mathrm{O} 8 A \cdots \mathrm{C} 2 B-\mathrm{C} 3 B$ angle is $116.1(2)^{\circ}$ and the torsion angles about the O8..C2 vector are $\mathrm{C} 7 A-\mathrm{O} 8 A \cdots \mathrm{C} 2 B-\mathrm{C} 3 B=157(1)^{\circ}$ and $\mathrm{C} 8 A-\mathrm{O} 8 A \cdots \mathrm{C} 2 B-\mathrm{C} 3 B=-84(1)^{\circ}$. If the nonbonding valence electrons on the alkoxy ester group are described as two $s p^{3}$ lone pairs, one lone pair would then lie at 28° to the $08 A \cdots \mathrm{C} 2 B$ vector. Alternatively. if they are described as $s p^{2}$ and p lone pairs, the axis of the former would then make an angle of 56° with the $08 A \cdots \mathrm{C} 2 B$ vector. As in the case of the nitro analogue, the geometry of this interaction is similar to that for an incipient Michael addition to the C2-C3 bond. Indeed, the C2A atom deviates from the plane defined by its three bonded neighbours towards $O 8 B$ by 0.035 (2) \AA. This results in the molecule having a slight
cis bend about the inter-ring bond. Although ester groups often make interactions with electrophilic centres (e.g. hydrogen bonds) via the carbonyl O atoms, interactions involving the alkoxy O atoms should not be overlooked.

Each pyridine N atom lies 3.001 (3) \AA from the opposite carbonyl C atom, only just within van der Waals contact ($3.2 \AA$). Furthermore, the axis of each N -atom lone pair is not directed towards the opposite carbonyl C atom, but makes an angle of $57.2(1)^{\circ}$ with the corresponding $\mathrm{N} 1 A \cdots \mathrm{C} 7 B$ vector $\left[c f .51-52^{\circ}\right.$ for (2)]. There are no short intermolecular interactions.

Experimental

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=272.28$
Orthorhombic
Pbcn
$a=15.885$ (4) \AA
$b=7.804$ (1) \AA
$c=10.504(1) \AA$
$V=1302.1$ (4) \AA^{3}
$Z=4$
$D_{x}=1.39 \mathrm{Mg} \mathrm{m}^{-3}$
M.p. $=423 \mathrm{~K}$

Data collection
Enraf-Nonius FAST TV area detector diffractometer
Collection method: SADONL and MADNES (see below)
Absorption correction: none 5430 measured reflections 1057 independent reflections

Refinement

Refinement on F
Final $R=0.033$
$w R=0.035$
$S=0.62$
669 reflections
115 parameters
All H-atom parameters
refined
$w=\left[\sigma^{2} F+0.0001\left(F^{2}\right)\right]^{-1}$

5669 observed reflections
$[I>3 \sigma(I)]$
$R_{\text {int }}=0.07$
$\theta_{\text {max }}=25.2^{\circ}$
$h=0 \rightarrow 17$
$k=0 \rightarrow 9$
$l=0 \rightarrow 12$
Mo $K \alpha$ radiation
$\lambda=0.7106900 \AA$
Cell parameters from 500 reflections
$\theta=4-25^{\circ}$
$\mu=0.097 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Flawless blocks
$0.35 \times 0.30 \times 0.27 \mathrm{~mm}$
Colourless
$(\Delta / \sigma)_{\max }=0.026$
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors
from Cromer \& Mann
(1968) (O, N, C) and

Stewart, Davidson \&
Simpson (1968) (H)

Data collection: SADONL (Danopoulos, Wilkinson, HussainBates \& Hursthouse, 1991); MADNES (Pflugrath \& Messerschmidt, 1989). Standard reflections are not relevant to this mode of data collection. Data reduction and cell refinement: SADONL. The structure was solved by direct methods using SHELXS86 (Sheldrick, 1986) and refined with SHELX76 (Sheldrick, 1976), including H atoms located from a difference Fourier map. Molecular graphics: PLATON (Spek, 1990); PLUTON (Spek, 1991). Software used to prepare material for publication: PARST (Nardelli, 1982).

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\AA^{2})

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
07A	0.1774 (1)	0.1790 (2)	0.0307 (2)	0.0686 (7)
O8A	0.12290 (9)	0.0437 (2)	0.1996 (2)	0.0479 (6)
N 1 A	-0.0903 (1)	0.3627 (2)	0.1649 (2)	0.0443 (7)
C2A	-0.0150 (1)	0.2886 (2)	0.1827 (2)	0.0353 (7)
C3A	0.0343 (1)	0.2285 (2)	0.0831 (2)	0.0371 (7)
C4A	0.0043 (2)	0.2488 (3)	-0.0403 (2)	0.0477 (9)
C5A	-0.0724 (2)	0.3250 (3)	-0.0597 (3)	0.0516 (9)
C6A	-0.1177 (2)	0.3778 (3)	0.0443 (3)	0.0501 (9)
C7A	0.1190 (1)	0.1498 (3)	0.1004 (2)	0.0441 (9)
C8A	0.2057 (2)	-0.0233 (4)	0.2282 (4)	0.0657 (13)

Table 2. Geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

07A-C7A	1.204 (2)	C2A-C2B	1.493 (2)
08A-C7A	1.332 (2)	C3A-C4A	1.390 (3)
O8A-C8A	1.447 (3)	C3A-C7A	1.490 (2)
N1A-C2A	1.342 (2)	C4A-C5A	1.371 (3)
N $1 A-\mathrm{C} 6$ A	1.345 (3)	C5A-C6A	1.372 (3)
C2A-C3A	1.388 (2)		
O8A \cdots C2B	2.849 (3)	N1A \cdots C7B	3.001 (3)
O8A \cdots N1B	2.913 (3)		
C7A-O8A-C8A	115.4 (2)	$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	118.1 (2)
C2A-N1A-C6A	117.2 (2)	C3A-C4A-C5A	119.5 (2)
$\mathrm{N} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A$	122.9 (2)	C4A-C5A-C6A	118.6 (2)
$\mathrm{N} 1 A-\mathrm{C} 2 A-\mathrm{C} 2 B$	114.6 (2)	N1A-C6A-C5A	123.7 (2)
C3A-C2A-C2B	112.3 (2)	O8A-C7A-C3A	113.2 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	123.8 (2)	07A-C7A-C3A	122.9 (2)
C2A-C3A-C4A	118.1 (2)	O7A-C7A-08A	123.9 (2)

The diester (3) was obtained by oxidation of 1,10 -phenanthroline to $2,2^{\prime}$-bipyridine- $3,3^{\prime}$-dicarboxylic acid (Baxter, Connor, Povey, Powell \& Wallis, 1992), esterification with methyl orthochloroformate/ N-methylmorpholine (Rebek, Trend, Wattley \& Chakravorti, 1979) and crystallization from acetone.

We thank Professor M. B. Hursthouse and the SERC X-ray Crystallography Service, University of Wales, Cardiff, for collecting the diffraction data, Professor J. A. Ballantine and the SERC Mass Spectrometry Service for some data and the University of Kent for a studentship (to CRR) and further financial help.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71395 (7 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AL1057]

References

Baxter, P. N. W., Connor, J. A., Povey, D. C., Powell, A. K. \& Wallis, J. D. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1601-1605.

Baxter, P. N. W., Connor, J. A., Povey, D. C. \& Wallis, J. D. (1991). J. Chem. Soc. Chem. Commun. pp. 1135-1137.
Bürgi, H.-B., Dunitz, J. D. \& Shefter, E. (1973). J. Am. Chem. Soc. 95, 5065-5067.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Danopoulos, A. A., Wilkinson, G., Hussain-Bates, B. \& Hursthouse, M. B. (1991). J. Chem. Soc. Dalton Trans. pp. 1855-1860.

Egli, M., Wallis, J. D. \& Dunitz, J. D. (1986). Helv. Chim. Acta, 69, 255-266.
Nardelli, M. (1982). PARST. A System of Computer Routines for Calculating Molecular Parameters from the Results of Crystal Structure Analysis. Univ. of Parma, Italy.
Pflugrath, J. W. \& Messerschmidt, A. (1989). MADNES. Version 11-0989. Program for Control of Data Collection with Enraf- Nonius FAST X-ray Diffractometer. Enraf-Nonius, Delft, The Netherlands.
Rebek, J., Trend, J. E., Wattley, R. V. \& Chakravorti, S. (1979). J. Am. Chem. Soc. 101, 4333-4337.
Rice, C. R., Wallis, J. D. \& Povey, D. C. (1992). Acta Cryst. C48, 19881991.

Spek, A. L. (1990). Acta Cryst. A46, C-34.
Spek, A. L. (1991). PLUTON. Molecular Graphics Program. Univ. of Utrecht, The Netherlands.
Schweizer, W. B., Procter, G., Kaftory, M. \& Dunitz, J. D. (1978). Helv. Chim. Acta, 61, 2783-2808.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1993). C49, 1982-1985
Structure of Pentaerythritol Tetrabenzoate

L. M. Bormann and R. G. Baughman*
Division of Science, Northeast Missouri State
University, Kirksville, MO 63501-0828, USA

P. Mumba and C. E. Meloan

Department of Chemistry, Kansas State University, Manhattan, KS 66506-3701, USA
(Received 30 June 1992; accepted 8 April 1993)

Abstract

Distances and angles about the central C atom are in agreement with literature values for pentaerythritol and its ester derivatives; three C -'central C '- C angles are $<109^{\circ}$ while two are $>109^{\circ}$. The $\mathrm{O} \cdots \mathrm{O}$ distances are incompatible with metal complexation; this is consistent with unsuccessful attempts to form complexes with various metal cations.

Comment

This project was undertaken to explore the usefulness of the title compound (PETB) as a metal ligand. Atomic coordinates and isotropic thermal parameters are given in Table 1, bond lengths and angles in Table 2. The molecular structure with atom labelling is shown in Fig. 1.

